
Community Place: Architecture and Performance

Rodger Lea Yasuaki Honda Kouichi Matsuda Satoru Matsuda
Sony Architecture Labs. Software Lab

Sony Corp. Shinagawa, Tokyo 146 Japan
Tel: +81 3 5448 4380 email rodger@csl.sony.co.jp

ABSTRACT

Community Place is a shared multi-user VRML system designed to
work in the Internet. It consists of a VRML2.0 browser, a multi-user
server architecture and an application support environment. Com-
munity Place has been developed over a two year period during
which we have contributed some of our work to the VRML2.0 stan-
dard. The VRML community is now embarking on the next phase of
VRML’s development, support for multi-user systems. This paper
discusses the architecture and performance from the product version
of Community Place and our plans for future development. Its goal
is to provide input and data to the debate about multi-user VRML
in the hope of aiding the next phase of VRML’s evolution.

Categories and Subject Descriptors: C.2 [Computer - Com-
munication Networks]: Distributed Systems; C.4 [Computer
Systems Organization]: Performance of Systems; I.3.7 [Three-
Dimensional Graphics and Realism]: Virtual Reality

1 INTRODUCTION

The Virtual Society (VS) project is a long term research initiative
that is investigating how the future electronic society will evolve.
As a first step in this project we have been exploring the capabilities
of existing technology to support social spaces, i.e. electronic lo-
cales where people go to interact. In our initial investigation, we
have chosen to explore the 3D spatial metaphor as a basis for a
shared information and interaction space. Our choice of a 3D spatial
metaphor is based on our believe that such a metaphor is an attrac-
tive ’natural’ environment within which users can interact. Rather
than strive to find new metaphors to present data, we mimic the
world in which we live. While it is clear that not all interaction
needs or benefits from a three dimensional setting, we believe that
such a setting, providing support for notions such as presence, loca-
tion, identity and activity[1], will provide a generic basis on which
a number of different application types will be constructed.

Thus, our goal has been to build a support infrastructure that will
allow many users to participate in a shared, interactive 3D world.
Such interaction will include the ability to see each other, talk to
each other, visit locales with each other and work with each other.
Our system, CommunityPlace1 (CP) has elements of a computer-
supported cooperative work (CSCW) environment, a virtual reality
system and an on-line chat forum.

1Community Place was formally know as CyberPassage

Such systems have already been explored in a number of ex-
perimental research platforms. However in the majority of cases
the work has been confined to high bandwidth communication net-
works supporting small numbers of users. Our work differs in that
our initial goal has been large-scale systems capable of supporting
many geographically dispersed users, interconnected through low
bandwidth, high latency communication links.

This paper is laid out as follows; section 2 we briefly introduce
the architectural possibilities when building a distributed Virtual
Environment (VE) and present the issue of distributed consistency
which any distributed VE must solve. In section 3 we introduce the
basic CP system architecture, relate it to the architectures discussed
previously and present each of the major components. In particular
we introduce the two models we provide to build distributed shared
behaviors, the simple shared script (SSS) model and the application
object (AO) model. In section 4 we introduce our initial approach
to server scalability based on the spatial model and section 5 con-
cludes with an overview of the architectural features of the current
CP system.

Section 6 then discusses performance issues relating to raw
server performance, and communication costs for the two applica-
tion models under different server loads. In section 7 we introduce
our ongoing development of a replicated server to migrate the sys-
tem towards a hybrid client-server, peer-to-peer system. Section 8
relates our work to others both in the academic and internet commu-
nities, and sections 9 and 10 discuss future directions and conclude.

2 ARCHITECTURES FOR SHARED VRML WORLDS

Building a simple distributed Virtual Environment (VE) is not diffi-
cult. It requires 3 conceptual components; a database of objects that
exist in the world, a set of tools to populate that database and a set
of devices that display the contents of the database. The display de-
vice doubles as an input device and allows users to navigate through
the world and to interact with other users and objects in the world.
To achieve this, it requires some form of communication that will
allow the display devices to access the database and to propagate
user input to the database.

� The display device can range from a low-cost consumer elec-
tronics device up to a high-end graphics workstation.

� The communications link is of prime importance to the per-
formance of the user device. In a consumer setting, current
technology constrains us to a maximum bit rate of 14k bits per
second, whereas a modern research lab has access to a Gbit
communication link.

� The server maintains the database of scenery objects that
make up the world and users who are navigating through those
scenes. It delivers the contents of the database to the display
devices as and when needed.

Copyright Notice
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage, the copyright notice, the title of the publication and its date appear, and notice is given that copying is by permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.




There are two significant issues to be addressed when building a
distributed VE. The first issue is the physical model used to structure
the system, i.e. where the components go. The second issue is how
those components are used to support the distributed algorithms,
and in particular the consistency guarantees.

Since the scene database is shared by all client devices that are
accessing the database, and since the clients will be updating the
data, then the principal role of the database is to maintain a consis-
tent copy of the data. Changes originating at the client side need to
be propagated to the database, and used to update the scene in the
database in a consistent manner.

2.1 Possible system architecture

Distributed systems are by their very nature large and complex sys-
tems, whose design is often more of an art than an engineering dis-
cipline. In this respect, distributed VEs do not differ from any other
type of distributed application.

There exists a spectrum of choices when trying to decide how
to build a distributed VE. This spectrum ranges from the traditional
client-server architecture, through clients connected to replicated
servers to fully replicated peer-to-peer systems.

� client-server architectures: The client-server architecture is
conceptually and practically the simplest method of building
a distributed system. The majority of small scale distributed
systems are built in this way. The database of scene objects is
held on a single server. The client devices access the server to
obtain information about the world’s structure, and to inform
the server about changes originating at their client. Because
there is only one copy of the scene data held at the server,
then the issue of updating the data in a consistent manner is
simple.
This model is complicated slightly if client side devices, ie the
browsers cache data. In this case the system has to be able to
resolve the issue of inconsistencies between the copies cached
in the clients. Generally, the system will arrange to cache read
only copies at client, any updates will be made to the master
copy held in the server and the master copy will update cached
copies or simply invalidate them.

� peer-to-peer systems: At the other extreme from the client-
server model, is the peer-to-peer model. In this architecture,
there is no single repository or master copy of the data. In-
stead, each client maintains a copy or replica of the data. The
current state of the world database is distributed throughout
the browsers.
Updates to local copies of a replica have to be made to all
replicas. Again, there are a many protocols, all of which aim
to achieve the same result; ensuring that a change to one copy
is replicated to all other copies to maintain consistency.

� Hybrid systems: Somewhere in between these two endpoints
on the spectrum are the hybrid systems. These systems merge
the client-server and the peer to peer model. They gener-
ally maintain the client-server link from the browser to the
database. However, they replicate the database for perfor-
mance reasons.
By replicating the database, the system is able to avoid the
critical drawback of the client-server model, that of perfor-
mance bottleneck and single point of failure due to the single
server that all communication goes through.

2.2 Consistency architecture

The fundamental model presented by a distributed virtual environ-
ment (VE) platform is one of a shared 3D space. Such a space,
because it is shared, must be seen consistently by all users of that
space. A system can provide different levels of consistency, ranging
from a strict interpretation to best effort[13].

In a strict interpretation, any actions that occur in the shared
space must be propagated to all participants in that space, and con-
flicts between user actions are either avoided, or resolved. Further-
more, actions in the space maintain their causal relationship so that
a user can make sense of a ’happened before’ and ’happens after’
relationship. Obviously, maintaining such consistency in a system
where there are many participants is a complicated task and one that
requires significant exchange of information between the copies.
The choice of algorithm is crucial to the amount of message passing
needed to reach consistency. Any distributed consistency algorithm
has two major concerns:

� Membership: The membership of the consistency group, i.e,
who is taking part in the consistency algorithm is crucial
to performance. Any mechanism that reduces the number
of participants in the consistency group directly reduces the
number of messages that must be exchanged.

� Consistency guarantee: Once membership has been decided,
the next issue is what model of consistency is used by the
consistency algorithms. There has been much work in the
research community addressing the issue of distributed con-
sistency in more traditional data applications with a goal of
reducing the cost of the algorithms. This work has concen-
trated on relaxing the degree of consistency either in a tem-
poral domain[21] [22], or in a data value domain[12].

It is interesting to note that the design of the consistency algo-
rithm, while related to the underlying system architecture is, to a cer-
tain extent, an orthogonal issue. For example, it is possible to have
a fully replicated, peer-to-peer system model yet still use a single
master algorithm for data consistency. Alternatively, it is possible
to use a single server, yet to run consistency algorithms between
cached copies in client browsers.

3 CP SYSTEM ARCHITECTURE

The Community Place system is a client-server system. It consists
of a central server, running at a well know internet node, which is
responsible for enabling browsers to view a single shared VRML
scene. Browsers connect to this server when they load the VRML
file associated with the shared scene.

The basic system architecture for CP is shown in figure 1. In the
following sections we discuss the individual components in detail.

WWW
browser

Client System (PC)

WWW
browser

Client System (PC)

Server
Aura Manager
Dynamic data

VSCP

VSCP

Application object (AO)

VSAP

WWW server
(httpd)

HTTP

CP Browser

CP Browser

Figure 1: CP architecture



3.1 Browser

As can be seen from figure 1, the browser works in conjunction
with a HTML browser. The CP browser loads the 3D data file (in
VRML2.0 format), in the course of which it finds an entry describ-
ing the location of the server to be used for this shared 3D scene.
The CP browser then contacts the server via the Virtual Society
Client Protocol (VSCP) that runs above IP. The server informs the
CP browser of any other users in the scene, including their loca-
tion, and any other 3D objects not contained in the original scene
description downloaded from the web server. The details are dis-
cussed below.

Local scripting

The CP browser supports the VRML2.0 standard and uses Java as its
scripting language. In the usage scenario discussed above, a VRML
file is downloaded to the local browser which renders its contents.
CP uses the associated HTML browser to subsequently download
any scripts referred to in the VRML file. Scripts are able to ma-
nipulate scene graph nodes by generating events that are delivered
to the node and change one or more of its properties, for example,
its position in the scene, its shape or one of its material attributes.
Obviously, since the scripts are fully functional Java code, they are
not restricted to just changing the scene graph. They can, for exam-
ple, dynamically generate additional VRML nodes, or locate and
add existing VRML to the base scene downloaded in the original
VRML file. This may be carried out using a call to a http server or
by a request to another network machine. Further, they can also
interact with other applications, for example mining data from a
database which can subsequently be turned into VRML and added
to the shared scene.

In a standalone browser, the execution mechanism of sensors,
events and scripts allows animation of a local scene graph. How-
ever, to support our goal of shared interactive scenes we allow
scripts to communicate events to the scene graphs managed by other
browsers.

Browser-server communications

The browser communicates with other browsers using the server
(see below) and a protocol called Virtual Society Communications
Protocol (VSCP). VSCP has two goals: efficient communication of
3D scene transformations and open-ended support for script specific
messages.

The first goal is answered by ensuring that VSCP has a very
compact representation of 3D transformations and control mes-
sages. This efficiency is obviously crucial considering our target
of dial-up connections. For the second goal, VSCP has an object-
oriented packet definition that allows applications to extend the ba-
sic packet format with application specific messages. VSCP runs
above TCP which provides connection guarantees and simple fire-
wall traversal.

This mechanism enables us to send and receive script level mes-
sages that allow the browsers to share events and so support shared
interaction with the 3D scene. For example, a local user event
causes a local script to run, which in turn uses the message sending
facility of the CP system to deliver the event to a remote browser
sharing the scene. At the remote browser, this network event is
transformed into a local event which in turn causes execution of the
local script. We discuss this mechanism in more detail in section
3.3.

3.2 Server

The server, known as the CP Bureau acts as a position tracker and
message forwarder. Each user’s browser, as it navigates through
the shared scene, sends position information to the server. The

server then uses AOI (area of interest) algorithms (see section 4.1)
to decide which other browsers need to be aware of these position
changes. The server sends out the position to the chosen browsers,
which in turn use the information to update the position of the lo-
cal representative, the avatar, of the remote user. The role of the
server is limited to managing state on behalf of connected users. It
is generally unaware of the original scene loaded by the browser.

The second role of the server is to carry out a similar function for
any script level messages that are generated by a browser as a result
of user interaction. Again in a typical scenario, a user event, such
as a mouse click, will cause a local script to run. This script will up-
date the local scene graph and then post the event (or the resulting
change) to the server. The server then re-distributes this message
to other users in the scene so that the scene update is replicated and
shared by all users. We refer to this approach to application devel-
opment as simple shared scripts (SSS).

3.3 Application programming models

The CP system provides two models for application building, the
first is known as the Simple Shared Script (SSS) model, and the
second as the Application object (AO) model. The two share some
elements but are targeted at different applications and different au-
thors. Both models use the message sending API that CP supports.
Messages can be sent to all browsers (SENDTOALL), to all except
the sender (ALLNOTSELF) and to the owner or master of an object
(RESPONDER).

Simple shared scripts

The SSS model is a simple mechanism designed for small shared
applications in the 3D world. The model is a replicated script model
with each browser downloading the same script and executing it
locally. Typically these scripts would be associated with objects
that are downloaded in the initial VRML file.

As discussed above, the VSCP protocol supports script mes-
sage sending allowing a local script to send a message to all other
browsers sharing the scene. Using this mechanism, it is possible for
scene authors to develop small scale applications that share events
by sending those events to other browsers via the server.

Server
Aura Manager
Dynamic data

Application object (AO)

Server
Aura Manager
Dynamic data

Simple shared script Application Object 

1

2

3
4

1

2

3

4

5
5

6 6

5

CP Browser CP Browser CP Browser CP Browser

Figure 2: SSS versus AO scripting



In figure 2 we can see message flows as a result of a user se-
lection (i.e. a mouse click) in the SSS model (left side). A user
selection (1) causes a local script to run (2). This in turn converts
the event into a message and sends it to the server (3). The server
sends the message to all other browsers (4) who then convert the
message to an event that causes execution of the local script (5).

To deal with the issues of ownership and persistence, we add a
notion of a master browser to the SSS model. The master browser is
selected by the server and told it is master. Scripts are able to send
events either to all other browsers, or to the master. In situations
where, for example, the user wants to implement serialization of
a scene object, all interactions with that object use messages that
are sent to the master browser (RESPONDER). The master browser
then makes changes to its local copy, and distributes those changes
by using the SENDTOALL form of the message send.

Application objects

While the SSS approach is suitable for a number of simple shared
scene updates, more complicated applications require a more so-
phisticated mechanism. To support this, CP has a notion of an ap-
plication object (AO) which exists externally to the browser and the
server. The application object is an application run time that allows
application builders to create 3D objects, with associated behav-
iors, and to inject them into existing shared scenes. It allows users,
via local scripts, to interact with these applications. The applica-
tions use the Virtual Society Application Protocol (VSAP) to reg-
ister their application objects with the server. Registration informs
the server about the 3D visual representation, written in VRML,
and the spatial positions of the objects. The server then informs
the relevant browsers about the existence of these application ob-
jects and the VRML file to be downloaded to display them. Lastly,
the server forwards application-specific messages between the AO
and the browsers. Thus, an AO consists of three parts: the 3D data
description that represents the application in the shared scene; the
associated scripts that accept user input and communicate back to
the AO; and the AO side code that implements the application logic.

The application model presented by the AO is subtly different
from the SSS model described above. In particular, the AO defines,
by default, a master or controller for the application, whereas in the
SSS model, the scripts are essentially peer-to-peer and can make use
of the master concept if required. More importantly, the AO mech-
anism, because it registers objects via the server, benefits from the
server’s use of Area of Interest (AOI) algorithms to reduce commu-
nications (see 4.1). In the SSS model, scene objects downloaded
in the original VRML file are not known to the server and so it is
unable to optimise message sending.

Returning to figure 2 in the AO model (right side), the user event
(1) causes a message to be sent to the server (2), which in turn sends
the event to the AO managing the selected object (3). The AO car-
ries out internal processing and then typically sends back a message
(4) via the server to each browser (5) that runs the local script (6).
There are obviously many variations within these models. However
the major difference is that in the AO model, there is a designated
owner for an object who has sole control over its update.

A key aspect of the AO model is that it allows dynamic addition
of VRML data and associated scripts to an existing scene. The fea-
ture allows us to build shared worlds that evolve over time. The ba-
sic scene description is set up in a base VRML file and downloaded
by browsers. Subsequently, new scene elements can be added by
creating AOs to manage the new elements, and by using the server
and the VSAP protocol to add the new scene element to the basic
model already loaded by browsers. In a commercial environment,
this allows service providers to dynamically inject an application
into an existing shared scene. For example, a 3D shopping mall
would consist of a basic 3D scene which is downloaded initially
by the user. Subsequently, service providers can add shops into the
scene by creating AOs and connecting to the server. This model al-

lows a decoupling between server managers and service providers,
thus providing an open and extensible mechanism for application
provision.

4 SCALEABILITY

In the previous section, we discussed the basic architecture of the
CP system and the main components. To allow this architecture to
scale we exploit the following aspects:

� Static scene data is downloaded initially as part of the VRML
file and replicated at all browsers. Dynamic data can be man-
aged using local scripts plus message passing. This reduces
the burden on the server because it does not need to manage
this scene data.

� We offload some processing into the client browser using
the local scripting facility. This allows us to send events,
rather than state changes, and to use local scripts to handle the
events. This enables such techniques as dead reckoning[10].

� Sophisticated applications can be managed by external pro-
cesses and can use the local script to manage local updates in
individual browsers. Again, this approach reduces the role of
the server to a message forwarder and the management of the
application data is split between the AO’s and the browsers.

Although these mechanism do allow some degree of scaling by
reducing the communications between browsers (via the server),
they are not sufficient to support our goal of many hundreds of users
interacting in a shared space. To achieve such scalability, it is nec-
essary for us to find a way to limit the number of messages needed
between browsers to support the shared scene.

4.1 Spatial areas of interest

In previous experiments with the Dive system [9], we have observed
that participants form sub-groups where activities occur in clusters
or peer-to-peer within the global session. This mimics the way we
use the spatial model in the real world. The observation can be ex-
ploited to decrease overall message passing if one can deliver pack-
ets only to the recipients they are intended for, i.e. those within the
sub-group. In this way, the amount of global traffic is limited, and
the number of incoming messages to each user is reduced.

Using the three dimensions of space is a well-known approach to
partition VEs into several disjoint AOIs. Static geographical regions
are used in applications based on natural terrains, such as in DIS
based systems[16].

A different approach uses intersecting volumes to model inter-
action between participants. This notion of a spatial area of inter-
est associated with a user has evolved out of work in the COMIC
project [3]. The spatial area, known as an aura determines a bound-
ary; objects or users outside the boundary can not be influenced or
interacted with. In contrast, all objects within the boundary are can-
didates for influence or interaction. The COMIC model goes further
by defining two notions, focus and nimbus, to represent the degree
of interest users have in each other. The focus represents the degree
of interest one user brings to bear on another. The nimbus represents
the degree of attention one user pays to another. The combination
of the focus and nimbus of two interacting users defines their level
or degree of interaction.

It is this model that we seek to use to drive our consistency mech-
anism and to reduce the number of participants in any consistency
algorithm.

To achieve this, the server is structured as shown in figure 3. An
aura manager is responsible for tracking the spatial location of any
user (or AO object) and for determining if two user’s auras have
collided. If they have, the aura manager causes those two objects
to join a consistency group which is defined as a set of objects who



Distribution support infrastructure

user 2
client

user 1
client

user 3
client

user 1 and user 2
are in each others
aura

user 1
object

proxy

proxy

user 2
object

Group support infrastructure

proxy

user 3
object

user 2 and user 3
are in each others
aura

Group 1 Group 2

proxy

Aura
manager

Figure 3: Auras and groups

have shared data which must be maintained consistent. For exam-
ple, in figure 3, user 1 and user 2 are in each other’s aura, user 2
and user 3 are in each other’s aura, but user 3 is not in user 1’s aura.
Thus, any updates to user 3, e.g. a position update, will be sent to
user 2 but not user 1. The actual replicas are denoted by proxies, i.e.
local representatives of the remote object. In the case where the ob-
jects are all local to one server, these proxies are generally pointers
to the master object.

In essence, the aura manager is responsible for defining groups
of spatially co-located objects who need to maintain a degree of
consistency. As it decreases the degree of sharing, this mechanism
is used to reduce the amount of information that has to be sent out
from the server as a result of any state changes.

5 COMMUNITY PLACE ARCHITECTURE: CONCLUSION

Although the architecture of the CP system is technically client-
server, because of the way the server is structured, it also has el-
ements of a peer-to-peer architecture.

The server does not maintain a database of the VRML scene.
Rather, data is replicated at each browser. If the server acted simply
as a message redistributer, the system would actually be a peer-to-
peer architecture. However, the CP Bureau acts both as a message
replicator and a shared database. Since it is responsible for main-
taining the location and some attribute data belonging to clients (i.e.
their avatar data), then the total state of the shared VRML scene is
split between VRML data managed at the clients and data managed
by the server.

This approach has been adopted simply for performance and
scaling reasons. Our goal is to support large-scale worlds, with
thousands of participants. To achieve that, we have tried, where
possible, to minimize the data held in the server, since the server
acts as a bottleneck in the system.

By pushing data out to the clients, we are able to both reduce
server load and increase performance, because the client has local
copies of data and is therefore not forced to access the server when
it needs new data.

The downside of this is that certain data, in our case data belong-
ing to VRML entities that have behaviors associated with them, is
replicated at clients and we need to run consistency algorithms be-
tween client browsers.

Again, the approach taken in CP is a hybrid one. The SSS mech-
anism supports both fully replicated scripts and master slave scripts
and allows scene authors to decide which to use.

The AO model implements, by default, a master model with a
single copy of the data. However, application authors are free to
cache data at the client and implement their own consistency algo-
rithms.

6 PERFORMANCE

Because the CP system uses a range of techniques for performance
and provides a set of mechanism for application builders, there is no
simple performance data that accurately capture the performance of
the system. To allow readers to gain some understanding of the per-
formance of the system under different usage conditions, our exper-
iments are divided into two areas: the performance of the multi-user
server as a result of its AOI algorithms, and the performance of the
browser-to-browser communications when using the two applica-
tion models we offer.

6.1 Server performance

In the first set of experiments, we load the server with an increasing
number of clients. Performance is measured for three machines.
A Sun Sparc UltraServer 170 running Solaris 2.5 with 320MB of
memory, an SGI Indigo2 running Irix 5.3, with 256MB of memory
and a Sony NEWS 5000 machine running NEWSOS6.1 and 256MB
of memory.

The client side machines are Sony NEWS workstations. Each
of them supporting a client side test harness and connected to the
server machine using a 10Mbit Ethernet. The Ethernet is at all times
lightly loaded with general day to day network traffic.

The client side test harness is a fully configurable program that
can be used to simulate actual browser usage. The configuration
parameters fall into four categories:

� Client numbers. The harness can be configured with any num-
ber of clients, each will generate a separate connection to the
server. For all client, the percentage who move per second
can also be specified.

� Chat messages. For each client the size and frequency per
second of text messages can be specified.

� Application message. For each client, the size and number of
application messages per client can be specified.

� Attributes. For each client, the size of the client specific at-
tributes, managed by the server, can be specified.

For each client managed by the test harness, the client connects
to the server, exchanges some set up messages and then stores some
attribute information at the server. The client then begins to move,
send text and send application messages according to the test har-
nesses configuration parameters.

The amount of processing and messages generated as a result of
any one client moving depends on the configuration of the server
with respect its area of interest (aura). The area of interest algo-
rithms use two crucial parameters, size of area of interest (AURA-
SIZE) and maximum number of avatars in an aura (MAXINAURA).
The first parameter dictates the size of the bounding box for avatar
aura collision calculations at the server. The second dictates how
many of the potential collisions are reported to the client. If the
aura size is large, but the maximum number of avatars in an aura is
restricted to a small number, then a client will only ever be informed
of a small subset of potential collisions, where the subset equals the
maximum number of clients allowed in an aura. Messages sent by a
client are replicated to all browsers who have that client in their aura.
Hence, the MAXINAURA is a rough indication of the replication
factor for each message.



CPU Usage 
idle time SUN

idle time Sony

Idle SGI

user time SUN

user time Sony

User SGI

system time SUN

system time Sony

System SGI

% load

connections

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

0.00 200.00 400.00 600.00 800.00

Figure 4: CPU load at the server

As can be seen from figure 4, on a Sony NEWS workstation, as-
suming a reserve of 30% CPU idle time, then the server can support
400 connections. The SGI machines, at the same load, will handle
approximately 425 connections and the Sun 170, approximately 520
connections. The figures correspond roughly to the relative perfor-
mance of the 3 machines, the Sony and SGI are comparable, and the
Sun 10% more powerful. This implies that a larger server machine
would support a correspondingly larger number of connections.

However, the network traffic generated by the server is also an
important consideration. Figure 5 shows this information.

Network Traffic
In SGI

Out SGI

Total SGI

In Sony

Out Sony

Total Sony

traffic bytes x 10 3

connections

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0.00 200.00 400.00 600.00

Figure 5: Network traffic at the server

The network traffic indicates the amount of data arriving at the
server from clients, and the amount of data leaving the server head-
ing for clients. Generally the data leaving the server will be greater
than that which arrives, because the server is replicating the data and

distributing it to various clients. As can be seen, the Sony NEWS
will support a maximum of 500 connections, before network per-
formance tails off, the SGI‘s performance is similar. Although not
shown, the performance of the Sun machine is correspondingly bet-
ter and supports approximately 630 connections.

At these points, all servers are handling approximately 350k
bytes of network traffic. The reader should note, that for the pur-
poses of these experiments, the configuration parameters are set to
cause an artificially high amount of message traffic. Using more
realistic figures collected from actual usage at our public servers, a
Sun workstation will support upto 1000 connections.

As discussed in section 6.1 the area of interest algorithms use
two parameters to reduce network traffic; AURASIZE and MAX-
INAURA. To understand the effect of varying these parameters we
present two further experiments.

AURASIZE and MAXINAURA

In: AURASIZE:100

Out: AURASIZE:100

Total: AURASIZE:100

In: AURASIZE:30

Out: AURASIZE:30

Total: AURASIZE:30

Traffic bytes x 103

MAXINAURA

20.00

40.00

60.00

80.00

100.00

120.00

140.00

10.00 15.00 20.00 25.00 30.00

Figure 6: Server traffic as a function of MAXINAURA and AURA-
SIZE

In the first, the aura size is set to a higher value of 100 meters and
the MAXINAURA value gradually increased. The network traf-
fic is measured and presented. In the second experiment, we keep
the AURASIZE at 30 meters, and alter the MAXINAURA. In both
cases the number of connected clients is held constant at 100.

Looking at figure 6 the total message traffic using an AURA-
SIZE of 30 meters stays constant as the possible number of avatars
in an aura increases.

In contrast, if the AURASIZE is increased to 100 meters, the
effect of allowing more avatars in an aura is a marked increase in
total message traffic. Looking in more detail, although the traffic
from clients into the server remains constant (at about 200k) the
traffic generated by the server starts at 420k when MAXINAURA
is 10, and climbs to 1400k when MAXINAURA is 30.

These experiments show clearly the difficulty in predicting mes-
sage traffic (and hence server load) based on the AOI algorithms.
While it is clear that increasing the MAXINAURA will lead to a
growth in traffic, the interplay with the AURASIZE is less clear.
The actual result of these two factors is dependent on the movement
behavior of the clients which in turn is based on the scene design.

6.2 Browser performance

We conducted five experiments to show the basic performance of
the browser and server interaction in the CP system. In all cases the



server machine is a NEWS 5000 and the client machines are DEC
Celebris PCs (Pentium 133MHz 64MB - Win95).

The first experiment measures the event processing cost within
the browser. We measured the cost of calling Java from VRML (the
cost of eventIn) and posting an event from Java to VRML (the cost
of eventOut). The actual experiment is as follows: we have two
script nodes in a VRML file, each of which refers to a different Java
class file. On an initial trigger event, one of the script nodes starts
to generate events in the Java code. These events are routed to the
other script node. The execution path is: Java! eventOut! rout-
ing! eventIn! Java. The destination Java script code performs
nothing. The cost of this execution path is 0.99ms. (averaged over
3000 runs).

The second experiment measures the cost of basic networking
function. It measures the cost of sending a message from a Java
program in a browser to a server which sends back the message to
the same client. The actual setting is as follows: a browser loads
a simple VRML world and connects to the server. On the initial
trigger event in the world, some Java code is called and the time
measurement started. This code sends a message (using our own
API) to the server. The server automatically sends back the message
to the browser. On receiving the message, the browser generates an
event within the VRML scene which is routed to the Java code. The
execution path is: Java! messaging API! network! server!
network! eventIn! Java. This code path is repeated 3000 times
for an average cost of 6.48ms.

Application Messaging Costs
PC AO

UNIX AO

Simple Shared Script

round trip ms

Number of users
0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

0.00 100.00 200.00 300.00 400.00

Figure 7: Total system communication costs

The other three experiments show the different costs for differ-
ent application models in a practical setting. As described in 3.3, we
have two different application programming models, Simple Shared
Scripts and Application Object. In both cases, we create a sim-
ple VRML application that generates an initial event in the browser
which is then delivered to a master (in case of SSS model) or AO
(in case of AO model). On receiving the message, the master or AO
sends the same message to all the clients (including the client that
generated the original event). The execution path looks like: Java
!messaging API! network! server! network! AO or mas-
ter! network! server! network! eventIn! Java. This test
is repeated several hundred times and an average value taken.

For each of these execution paths, we load the server with an
increasing number of test clients and measure the effect on the total
round trip time.

Currently we provide AOs on a PC platform where applications
are written in Java and on a UNIX platform where C++ is used. For
comparison, we used both PC AO and UNIX AO for the measure-
ment. Figure 7 shows three graph lines: one for SSS and the other
two for PC AO and UNIX AO.

The graph shows clearly that the SSS model is both more costly,
and more sensative to server load. The reason for this is that the SSS
model does not use the servers internal AOI algorithms. Thus, when
the master replies via the server, the server is forced to send the reply
to all connected clients.

In contrast, the AO model uses the AOI optimisation available
in the server. Thus, the maximum number of messages generated
when the reply is recieved from the AO is dependent on the MAX-
INAURA parameter of the server. In these experiments it is set at
8. The PC AO and Unix AO performs in a similar manner, which
is expected since their task is to simply receive the message and
immediately send it back to the server.

7 DISTRIBUTED ARCHITECTURE

Our current development work is designed to scale the client-server
architecture beyond its present limits. To attack this issue we are in-
vestigating a hybrid client-server, peer-to-peer model with our col-
leagues at the Swedish Institute of Computer Science.

As part of this work we are building a replicated version of our
current server. By replicating the server, we are able to spread the
processing and communication load between several servers and so
scale the entire system.

In this architecture, the aura manager tracks objects and informs
them of any aura collisions. The replica joins the communication
group associated with the remote object and runs the consistency
algorithm defined for that object. However, in the non replicated
server, the group was a structuring technique within the server,
within the distributed server; the group maps to a multicast com-
munication group.

WWW
browser

Client System (PC)

VSCP

VSCP

VSCP

WWW
browser

Client System (PC)

WWW
browser

Client System (PC)

Multicast based
group comms.

Master copy
of data item

Replica of
data item

CP Browser

CP Browser

CP Browser

User 1

User 2

User 3

Figure 8: Distributed architecture

In the distributed server case, the spatial model is used exactly
as in the single server case. It partitions the database into groups of
spatially co-located objects who manage their consistency using a
group communication model. This allows us to reduce the amount
of data that must be replicated at each server to that which is re-



quired for the groups associated with users actually connected to
that server.

Our communication mechanism is based on multicast which is
used between servers to support the consistency algorithms needed.

Multicast communication allows a single message send to be
delivered to a group of receivers. In hardware supported multicast
environments, e.g. ethernet this allows for very efficient messag-
ing. In the Internet, an experimental multicast layer built above IP
is used. This system, known as the MBone, implements a virtual
multicast network over the inherently point to point mechanism of
the internet. The technique used is based on message encapsulation
and tunneling.

Further details of the aura model and its use of the group com-
munication model can be found in [8] which reports on joint work
between our group and the Dive group at SICS.

Our initial investigations of using this multicast group mecha-
nism to support weak and adaptive consistency models is based on
previous work with Apertos[6].

8 RELATED WORK

There is considerable research activity in the area of large scale dis-
tributed environments, these include projects focusing on collabora-
tion [9], [19] [11] [5] [14] [15] and projects focusing on simulation
[20] [17]. In most of this work, the emphasis has been on worksta-
tion level devices and high bandwidth communications.

As discussed in the text, the Dive system was the original testbed
for most of the work on the spatial model we used. MASSIVE inher-
ited this spatial model and carried out a fuller implementation. Our
implementation of the spatial model, particularly the use of the aura
collision manager is based on both Dive and MASSIVE. However,
the main use of the aura model in the CP system is to reduce com-
munications to enable scaling, our use of multicast communications
supports this. Our work also differs in the target. Both MASSIVE,
and to a lesser extent, Dive, have concentrated on collaboration and
conferencing and have assumed professional level computer and
communication facilities. Our main goal has been large-scale social
worlds using low-cost consumer equipment. As such, the eventual
architecture we adopted, a hybrid client-server/peer-to -peer model
differs from the more ’pure’ approaches of Dive and MASSIVE.

In terms of social shared spaces targeted at the consumer mar-
ket, there is already a legacy with systems such as habitat[23] and
Worlds Away - a Compuserve service based on Habitat, which, al-
though not full 3D spaces, offer some degree of spatial metaphor.
More sophisticated shared spaces have been built by Worlds Inc.,
including the Worlds Chat and the Alpha world2. However, these
projects, although using the Internet, have relied on proprietary
graphics and browsers.

Recent work targeting the WWW and using full 3D shared
spaces has mainly been confined to the VRML community. Within
that community there are several projects of note. The Cyber-
gate system from Blacksun Inc.3 has built and experimented with
shared 3D spaces similar to the CP project. However CyberGate
concentrates on multi-user but does not support shared behaviors.
Moondo4 is a similar system to CyberGate in that it currently sup-
ports only static scenes. However, Moondo has experimented with
a shared object model as a basis for shared consistent objects.

The Pueblo project from Chaco Communications5 has evolved
out of earlier work on social MUDs. Recently it has augmented the
MUD server with VRML support and provided a VRML1.0 browser
that allows MUD authors to build 3D scenes. This approach allows
world builders access to the rich mechanism of the MUD database,
but again only supports static scenes.

2http://www.worlds.net
3http://www.blacksun.com
4http://www.intel.com/iaweb/moondo/index.htm
5http://www.chaco.com

9 CURRENT AND FUTURE DIRECTIONS

We are currently working in three broad areas. Firstly, we are ex-
tending the media support within the shared scenes. We have there-
fore experimented with audio chat facilities. However, the low-
bandwidth links to home PCs severely curtail the fidelity of the au-
dio stream. We are also designing streaming mechanisms for vari-
ous media to allow us to stream audio and video from AOs, via the
server, to the browser. Again the principal constraint is bandwidth.

Our second area of interest is augmenting the application mech-
anism with application libraries that allow simpler creation of com-
plicated applications. To date, authoring consists of using a 3D
modeler to build the basic components. An authoring tool, called
CP conductor, is then used to assemble objects into the scene, and
to subsequently associate behaviors with those objects. The author-
ing tool provides a set of pre-defined scripts that can be dragged
and dropped onto objects in the scene, allowing easy development
of simple scenes. However, more complicated behaviors have to be
written by the scene author. We aim to provide a set of more so-
phisticated objects and associated behaviors, and to enable users to
move these objects between independent scenes. A particular area
of concern is inter-object interactions. This basic facility will al-
low a far richer space as it will enable users to claim ownership of
objects.

Lastly, we are continuing our work on scaling issues in order to
support larger numbers of users and more complicated scenes. As
discussed in the text, part of this work is concentrating on the issues
of consistency in large scale VEs, where we are exploring adaptive
techniques to deal with the wide area communication problems.

10 CONCLUSION

One of the major reasons for the success of the WWW is that it has
enabled unsophisticated users to participate, both as consumers and,
more importantly, producers of information.

However, the WWW remains an essentially ’lonely place’. Al-
though many users may be simultaneously viewing the same infor-
mation, there is no support to allow them to interact, or even be
aware of others.

Our goal has been to enable interactions, so that the WWW
moves from being an information space to being a social space. To
do that, we have chosen to use the 3D spatial metaphor to build 3D
spaces that mimic real world spaces and provide a virtual place for
interaction.

Although this is a necessary first step, it is not, we believe, suffi-
cient to cause interaction to take place. It is our belief that this type
of large scale social interaction will only happen if users can create
spaces to reflect their requirements. As such, the most important
goal of the CP project has been to provide an infrastructure that al-
lows easy creation of such spaces, within a familiar framework, the
WWW.

While the main focus of our work has been on social spaces
rather than on spaces that support more traditional CSCW tasks, we
have built simple examples of worlds where collaboration is possi-
ble and well used. It is our belief, that by providing a platform that is
sufficiently rich to support collaboration, but sufficiently open and
accessible to allow anybody to author spaces, we will enable far
greater use of the Internet for collaboration.

11 ACKNOWLEDGEMENTS

We are indebted to our colleagues in the Sony Computer Science
Lab. and Sony’s Architecture Labs. for their help in the definition
of this project. We also wish to thank our colleagues at the Swedish
Institute of Computer Science who have contributed indirectly to
the CP design as part of our joint research project, Wide area virtual
environments (WAVE). Lastly, our thanks, as always, go to Mario



Tokoro, Toshi Doi and Akikazu Takeuchi for their continuing sup-
port.

References

[1] Benford. S, et al. Networked virtual reality and cooperative
work. Presence. Vol. 4 No. 4. Winter 1995. pp. 364-386. MIT
Press.

[2] The VRML2.0 specification. Version 2.0, Final Working Draft,
ISO/IEC WD 14772 July 18, 1996 Currently only available as.
http://vrml.sgi.com/moving-worlds/

[3] Benford, S., Fahlen, L., Greenhalge, C. and Bowers, J. Man-
aging mutual awareness in collaborative virtual environments.
Proc. ACM SIGCHI conference on Virtual reality and technol-
ogy (VRST’94) August 23-26th 1994, Singapore, ACM Press.

[4] Honda, Y., Matsuda, K, Rekimoto, J and Lea, R. Vir-
tual society. Procs. of VRML’95, San Diego. USA. Dec.
ACM press 1995 pp. 109-116, Order no. 434953 Available at:
http://www.csl.sony.co.jp/project/VS/VRML95.ps.Z

[5] Broll, W. and England, D. Bringing worlds together: adding
multi-user support to VRML. Procs. of VRML’95, San Diego.
USA. Dec. ACM press 1995 pp. 87-94, Order no. 434953

[6] Lea, R. and Yokote, Y. Adaptive operating system design
using reflection. Procs. of the 5th Workshop on Hot Top-
ics in Operating Systems (HTOS-V). Orcas Island Washing-
ton, USA.1995. pp. 95-101. IEEE press. Also available as:
http://www.csl.sony.co.jp/person/rodger/htos.ps.Z

[7] Lea, R., Raverdy, P.G, Honda. Y, and Matsuda, K. Issues in the
design of a large scale VE. Procs. of HICSS-30 Minitrack on
distributed VEs. IEEE press. Hawaii, Jan.7-10 1997.

[8] Hagsand, O., Lea, R. and Stenius, M. Using spatial techniques
to reduce message passing in a distributed VE. These proceed-
ings. Also avaiable as: Sony Computer Science Lab. Tech Re-
port http://www.csl.sony.co.jp/person/rodger.html

[9] Carlsson, C. and Hagsand, O. DIVE - A platform for multi user
virtual environments. Computer and Graphics Vol. 17. No. 6
1993 pp. 663-669

[10] Singhal, S. and Cheriton, D. Exploiting position history for ef-
ficient remote rendering in networked virtual reality. Presence.
Vol. 4 No. 2. Spring 1995. pp. 169-193. MIT Press.

[11] Snowdon, D. and West, A. AVIARY: Design issues for future
large scale virtual environments. Presence. Vol. 3 No. 4 Fall
1994. pp. 288-308. MIT press.

[12] Pu, C. Relaxing the limitations of serializable transactions
in distributed systems. Proceedings of the 5th ACM European
Workshop, Le Mont St Michel, France. Operating Systems Re-
view Vol. 27. No. 2 pp. 66-71. ACM press.

[13] Mosberger, D. Memory consistency models Operating Sys-
tems Review Vol. 27. No. 1 pp. 18-26. ACM press.

[14] Shaw, C., Green. M., Liang, J. and Sun, Y. Decoupled sim-
ulation in virtual reality with the MR toolkit. ACM trans. on
Information Systems. 11(3), pp. 287-317.

[15] Bricken, W. and Coco, G. The VEOS project Presence. Vol. 3
No. 2. Spring 1994. pp. 111-129. MIT Press.

[16] DIS ANSI/IEEE std 1278-1993. Standard for informa-
tion technology, Protocols for distributed interactive simula-
tion. March 1993

[17] Pope, A, The SIMNET network and protocols. BBN report no.
7102. BBN systems and technologies, Cambridge, MA. USA.
1989.

[18] Singh, G., Serra, L., Png, W. and Ng H. Bricknet: A software
toolkit for networked virtual worlds. Presence. Vol. 3 No. 1.
Winter 1994. pp. 19-34. MIT Press.

[19] Greenhalge C. and Benford, S. MASSIVE: a distributed vir-
tual reality system incorporating spatial trading. Procs of the
15th ICDCS. May 30 - June 2, Vancouver Canada 1995. IEEE
press.

[20] Macedonia, M., Pratt, D. and Zyda, M. NPSNET: A network
software architecture for large scale virtual environments. Pres-
ence. Vol. 3 No. 4. Fall 1994. pp. 265-287. MIT Press.

[21] Hutto, P and Ahamad. M. Slow memory: Weakening consis-
tency to enhance concurrency in distributed shared memories.
Procs. of the 10th ICDCS. pp. 302-311 May 1990 IEEE press.

[22] Birman, K., Schiper, A. and Stephenson, P. Lightweight causal
and atomic group multicast. In ACM transactions on Computer
Systems 9(3), 272-314. 1991

[23] Morningstart, C. and Farmer. F. The lessons of LucasFilm’s
Habitat In, CyberSpace: First steps. M. Benedikt. MIT press.
Cambridge, Massachusetts, USA, 1992.


